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Preface

This is a self-contained final report intended to: (1) state the principal results; (2)
explain, briefly, necessary terminology; (3) provide a motivating context; and (4)
discuss the impact of the results. While the report is aimed primarily at the program
manager, it contains sufficient detail to be circulated and archived.

The report has the following organization:
Significance of and summary of main results are enumerated in Section 1.

Motivation and terminology for the two main topics, polynomial-time subclasses
of satisfiability and algorithms for propositional logic programs, are in Sec-
tions A.1 and A.2. The beginning of each section provides background needed
to understand the significance of the results. Each subsection is associated
with a particular technical points. Results are stated in these subsections as
propositions without proof and are summarized in Section 1.

Professional activities and invitations are listed in Section A.3. These include
conferences, workshops, journal articles, editing, invitations, and external Ph.D.
thesis committee work.

Collaborators on our research topics are credited in Section A.4.



1 Main Results and Their Significance

Our work under ONR sponsorship has produced results illuminating the nature of
certain well-known polynomial time subclasses of Satisfiability. Most of these classes
are interesting because they have arisen from consideration of Linear Programming
concepts to formulations of Satisfiability. We have also achieved progress in the related
area of the well-founded semantics for logic programming. This section presents an
overview of our results. More detail is provided in Appendix A. Both this Section
and Appendix A are updated versions of the 1995 annual report submitted to the
Office of Naval Research in October, 1995.

1.1 Polynomial Time Subclasses of Satisfiability

A focus of considerable research is the characterization of subclasses of CNF Sat-
isflability that can be solved in polynomial time. The hope is that suitably large,
non-trivial classes can be found, particularly classes of unsatisfiable formulas.

1.1.1 Single look-ahead unit resolution

We investigate the class of problems solved with single look-ahead unit resolution
(SLUR). This class, discovered by us in 1994, is peculiar in that it may be defined
based on an algorithm rather than on properties of formulas. The algorithm, called
SLUR, selects variables sequentially and arbitrarily and considers both possible values
for each selected variable. If, after a value is assigned to a variable, unit resolution does
not result in a clause that is falsified, the assignment is made permanent and variable
selection continues. If all clauses are satisfied after a value is assigned to a variable
(and unit resolution is applied), the algorithm returns a satisfying assignment. If
unit resolution, applied to the given formula or to both sub-formulas created from
assigning values to the selected variable on the first iteration, results in a clause
that is falsified, the algorithm reports that the formula is unsatisfiable. Otherwise,
SLUR reports it has given up. An implementation of algorithm SLUR is given in
Appendix A.1.1. From now on we use SLUR to mean the class and the algorithm.

The significance of our results on SLUR, detailed in Appendix A.1.1, is as follows.

1. “The results give a simple but enlightening characterization of a class of SAT
problems that can be solved in linear time by unit resolution with 1-step look-
ahead. Extended Horn and balanced formulas are special cases.” (comment of




an OR reviewer - Timberline conference)

At least two major classes subsumed by SLUR require a recognition step before
a polynomial time algorithm can be applied to solve a given formula. In the
case of hidden extended Horn formulas the question of recognition is not known
to be solved in polynomial time.

The class defined by SLUR seems to be much larger than either hidden extended
Horn or balanced formulas.

The following are some comments on these results.

1.

The most serious drawback with SLUR is that it cannot determine unsatisfia-
bility unless the given formula is rather trivially unsatisfiable.

“I find it interesting that the algorithm seems simpler than the conditions under
which it is a decision procedure. It seems almost simpler to give the algorithm
and then define the decidable class as the class on which the algorithm deter-
mines satisfiability.” (comment of an AI reviewer - Timberline conference)

. It seems the SLUR idea can be generalized to subsume the class of g-Horn

formulas as well. Such an algorithm has been announced by Boros [3].

The algorithms associated with the class of balanced formulas seem quite com-
plex in comparison to SLUR and several detailed papers have been written
about these algorithms.

1.1.2 Single look-ahead with limited backtracking

There are several ways to improve SLUR. One is to add power to the look-ahead
step. For example, just adding a 2-SAT checker enables SLUR to solve numerous
formulas that it previously could not. Algorithm SLUR can also be improved by
adding a form of limited backtracking. Specifically, we choose a polynomial p and
allow SLUR, given a formula C as input, to backtrack at most p(|C|) times before
giving up if satisfiability or unsatisfiability has not been determined. The resulting
modification of SLUR is called ISLUR for improved single lookahead unit resolution.

The significance of our results on ISLUR, detailed in Appendix A.1.2, are:

1.

It appears that adding limited backtracking to SLUR does not significantly
widen the class of unsatisfiable formulas solved in polynomial time. We define




a sparse formula and observe that a preponderance of unsatisfiable formulas are
sparse. We show that ISLUR gives up on any sparse formula.

2. The above pessimistic result holds for several polynomial time tests for unsat-
isfiability that can be added to the unit resolution look-ahead of SLUR.

3. It remains to be seen whether limited backtracking significantly adds to the
class of satisfiable formulas solved in polynomial time.

The following is a comment on these results.

The result of [11] is that all resolution proofs of a k-CNF formula are exponential
in length if, “for some numbers a, d, such that 0 < d < a/8, (1) for every family
C' of at most an clauses from C there are at least |C'|/2 variables involved in
precisely one clause from C’; (2) there is a collection of sets D of dn variables such
that, for every family C’ of at most an clauses from C, every truth assignment
with domain D has an extension that satisfies C'.” We view our result as
stronger due to the weakness of (1): our pessimistic result holds even when
there are families with fewer than |C’|/2 variables involved in one clause.

1.1.3 Hierarchy of implicational formulas

Falsifiability for pure implicational formulas (only the implies operator — is allowed)
is surprisingly rich in providing hierarchies of subclasses of progressively increasing
hardness, eventually reaching subclasses that are NP-complete [27]. This richness
may be extended to general propositional formulas.

We studied both falsifiability and satisfiability for the broader class of implica-
tional formulas (where only — plus a constant f for false are allowed). We have
investigated an algorithm IMP that has the following characteristic. Given an impli-
cational formula F with each atom occurring in F at most twice and with at most k
occurrences of f, algorithm IMP determines satisfiability of F in O(k*|F|); we show a
similar bound applies for falsifiability. Heusch’s comments show that his falsifiability
problem reduces easily to ours. (Replace Heusch’s distinguished variable z with f.)

The following summarize the results of Appendix A.1.3.

1. Algorithm IMP determines satisfiability for class Sy (the set of all implicational
formulas with at most k occurrence of f and all variables occurring at most
twice) with O(k*|F|) complexity. This is an improvement over the best existing
algorithm which has complexity O(|F|*). We thus also have a polynomial time



algorithm for falsifiability even if k grows as fast as log(|F|)/loglog(| ). The
problem is N P-complete for arbitrary k.

2. It is straightforward, and efficiently accomplished, given a k-CNF formula C, to
construct an implicational formula F, or, given an implicational formula F, to
construct a CNF formula C, where C is satisfiable if and only if F is falsifiable.
However, we know of no direct and succinct expression of the class of multi-level
formulas that transforms to an implicational formula with at most k occurrences
of f. Thus, we view the implicational form as facilitating a simple expression of
a hierarchy of classes of multi-level formulas of possibly progressively increasing
hardness. :

3. Inlight of the last point, the study of such a hierarchy might in some sense reveal
the boundary between polynomially solvable and hard classes of satisfiability.

4. The hierarchy proposed by Heusch differs from that of, for example, Gallo and
Scutella {24] in that the test for membership in theirs can be accomplished in
O(|F|¥) steps whereas the test for membership in Heusch’s hierarchy is trivial.

Our results are important because they show that Heusch’s hierarchy is fixed-
parameter-tractable (the first SAT hierarchy we know of to have this property) and
suggest that study of Heusch’s hierarchy may reveal the nature of easy and hard
problems. See Appendix A.1.3 for more information on the significance of these
results.

1.1.4 Size of polynomially solvable subclasses

To measure the “size” of subclasses such as hidden extended Horn, simple extended
Horn, balanced, or SLUR we use a parameterized probabilistic model for generating
random formulas and determine over what parameter subspace a randomly generated
formula is a member of a particular subclass with probability tending to 1. Comparing
regions of the parameter space where formulas likely belong to particular subclasses
gives some idea of the size and scope of such subclasses.

The results of Appendix A.1.4, under a standard model known as the variable-length
model Ry np (m clauses from 2n literals, each occurring in a clause with probability
p) are summarized below and illustrated in Figure 1.

1. If (m,n,p) is a point in the parameter space where a random formula is not
extended Horn with probability tending to 1, then the formula is not balanced
with probability tending to 1.




2. For a rather small region of the parameter space, a random formula is Horn
with probability tending to 1. For the same region, a random formula is simple
extended Horn with probability tending to 1.

3. For all points in the parameter space above the line pn = y/n/m, a random
formula is neither extended Horn nor balanced with probability tending to 1.

4. For virtually all points of the parameter space as depicted in Figure 1, SLUR
solves a random formula with probability tending to 1.

5. The results of Appendix A.1.4 are based on a paper that also shows the relation-
ship between these polynomially solvable subclasses and effective algorithms for
satisfiability [22].

6. A reviewer of the above paper says: “I found the paper quite interesting because
(i) it summarizes well the history of the polynomial average-time analyses and
(ii) it also exhibits fundamental problems about the way of doing the analyses
and about poly-time algorithms themselves as well.”

A possibly more interesting standard model is the fixed-clause-width model M, .
(m clauses, each taken uniformly from all possible k literal clauses from n variables).
The probabilistic performance of resolution-based and other algorithms has received
quite serious consideration under this model. It is known that Davis-Putnam style
algorithms almost always find solutions to random formulas when m/n < a2%/k,c; a
constant, but even resolution can only build exponential size proofs of unsatisfiability
for almost all random formulas when m/n > 2%, ¢; a constant. Additionally, a
simple algorithm that reduces a given formula by successively finding and eliminating
pure literals (variables that occur only positively or negatively) finds a satisfying as-
signment for almost all random formulas when m/n < 1. We have found the following
about special subclasses of SAT.

1. A random formula is a member of at least one of the classes SLUR, g-Horn,
extended Horn, etc. with probability tending to 0 if m/n > c3/k>.

2. Another class of formulas consists of those that can be solved by a polynomial
time matching algorithm on a bipartite graph with one set of vertices represent-
ing variables, the other set of vertices representing clauses, and edges between
variable vertices and clause vertices whenever the corresponding variable is in
the corresponding clause. If a matching covering all clause vertices exists, then
a satisfying truth assignment follows easily. We have shown that a random
formula is a member of this class with probability tending to 1 if m/n < ¢4, ¢4
a constant.




The following are comments on these results.

1. The two results above are surprising taken together. It has been thought that
g-Horn [4], and possibly SLUR, are in some sense extremely broad polynomial
time subclasses of Satisfiability. However, the matching result above suggests
there are broader subclasses.

2. Given the results above, the question is whether there is a polynomial time
subclass PS of Satisfiability such that a random formula is a member of PS
with probability tending to 1 if m/n < ¢s2%/k or, better, if m/n < 2, ¢
and cg constants. We know there is a cs such that a preponderance of random
formulas are easy. We expect to be able to identify such formulas as belonging
to a polynomial time subclass of Satisfiability. However, so far, we are not even
close to this. Why is this?

3. Our analysis shows that q-Horn, SLUR, and other classes are vulnerable to
certain cycles in the following graphs. Given a CNF formula F, construct a
graph containing one vertex for each clause in F and such that an edge exists
between two vertices if and only if the two corresponding clauses have a variable
in common (regardless of polarity). Although the number of “killer” cycles is
low, the probability that one exists tends to 1 about where the probability that
a cycle exists tends to 1. This seems to be a feature of the “unbiased” and
symmetric distribution used to obtain the results.

1.2 Logic Programming Semantics

The strong theoretical interest in the stable and well-founded semantics needs to be
matched by practical implementations for the theoretical research to get significant
applications. The difficulty is that the standard algorithm for the well founded se-
mantics is too slow for most practical applications, and the stable semantics is co- N P-
complete in the worst case, and only in very special cases are fast implementations
known.

Currently, there is active research on more efficient implementations of both logic
programming semantics. In the work described here, for a fairly general class of
logic programs, we have found a speedup in the worst-case behavior of the standard
algorithm for computing the well-founded semantics that breaks what appeared to
be a likely lower time bound.




1.2.1 The well-founded semantics algorithm

The results of Appendix A.2.2 are summarized below.

1.

The first algorithm improves, albeit by a small margin, on current algorithms
for computing the well-founded semantics. It can be applied to all normal
propositional logic programs, although the speedups are provable only for the
somewhat specialized classes listed there. '

More importantly, that algorithm shows that the previous quadratic O(|.A]|P|)
bound can be broken in a broad variety of circumstances. Thus it should pro-
vide incentive for further research. (We, for example, expect to return to this
problem.)

We do not yet know how the algorithm will perform on practical examples.
In fact, only now are researchers starting to gather proposed benchmark pro-
grams, and there is no accepted distribution for experimentation with random
programs.

Normal logic programs, under the stable semantics, provide an especially simple
uniform way to represent arbitrary NP problems; for example, reductions of
various N P-complete problems to the existence of stable models seems to be
simpler than reductions to propositional satisfiability. Thus it is expected to be
highly useful as a specification tool.

. Besides being of interest in its own right, computing the well-founded semantics

can be used to help compute the stable semantics. We are continuing experi-
mentation with some non-obvious techniques in this direction, heuristics which
we hope will substantially speed up the search for stable models for many logic
programs. Thus we expect that any speedup in computing the well-founded
semantics will give substantially greater speedups to such a computation of the
stable semantics.

The standard algorithms for the well-founded semantics are simplifications of
various similar algorithms [42, 43, 1, 17, 35]. The algorithm is referred to as the
Van Gelder alternating fixed point algorithm since that presentation [42] was
the first clean exposition, generalizing ideas of [43]. The quadratic-time of the
algorithm is an easy folklore observation.

Finally, the section concludes with two theorems from the dissertation of Jen-
nifer Seitzer, a Ph.D. student of John Schlipf. She showed that in some spe-
cialized sets of logic programs the well-founded semantics, and sometimes even



the stable semantics, can be computed in linear time. Though these results
apply to fairly strongly constrained sets of formulas, they do call attention to
structural properties of logic programs that cause N P-completeness. (By com-
parison, 2-satisfiability is polynomial time, whereas existence of stable models
of sets of 2-variable rules is N P-complete.)

1.3 Seminal Survey on Satisfiability Algorithms

A considerable amount of time under ONR sponsorship has been devoted to a sur-
vey on Satisfiability algorithms that will appear as part of the 1996 DIMACS vol-
ume which constitutes the proceedings of the DIMACS Satisfiability workshop. This
project was begun three years ago by Jun Gu and Paul Purdom. John Franco and
Ben Wah have recently joined as co-authors. The project will expand to a book on
the subject, and an IEEE tutorial.
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Fig 1: The parameter space of model R, partitioned by dominant formula subclasses.
Pick a point in the parameter space. Locate the lines with names of subclasses on
the side of the line facing the chosen point. A random formula generated with
. parameters set at the specified point is in the named subclasses with probability
tending to 1.
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A Details of Results Under ONR Sponsorship

A.1 Polynomial Time Subclasses of Satisfiability

It is well known that CNF (Conjunctive Normal Form) Satisfiability is N P-complete.
A CNF Satisfiability formula consists of a set C = {C}, Cy, ..., Cin} of m subsets (called
clauses) of a set L = {1, %1, %2, T2, ..., Tn, T} Of  positive and n negative literals. In
what follows we assume, unless otherwise stated, that no two complementary literals
are in the same subset. The positive literals of L are called variables. Variables are
assigned values from the set {0,1} and z; =1 if and only if ; = 0 for all 1 < < n.
Given a CNF formula, the question is to determine whether there is an assignment of
values to the variables of L such that every clause in C contains a literal of value 1.
If such an assignment exists, the formula is said to be satisfiable. CNF Satisfiability
is well studied because, using a transformation of Tseitin, a Satisflability formula
F in a form other than CNF, even using alternate connectives such as —, may be
efficiently transformed to a CNF formula C such that JF is satisfiable if and only if C
is satisfiable; often an efficient such transformation in the other direction is unknown.

A focus of considerable research is the characterization of subclasses of CNF Sat-
isfiability that can be solved in polynomial time. The hope is that suitably large, non
trivial classes can be found, particularly classes of unsatisfiable formulas.

Several obvious subclasses of Satisflability are polynomially solvable. For exam-
ple, a formula containing no more than two occurrences of a literal and its comple-
ment [38], or a formula containing at least one negative literal in every clause are
easily solved in polynomial time. A more interesting class, due to its relationship
with logic programming, is the class of Horn formulas: a formula is Horn if all clauses
of two or more literals contain at least one negative literal and at most one positive
literal, and all unit clauses contain positive literals.

Extensions to Horn formulas have been proposed. Among the most notable ex-
tensions are those developed by way of Linear Programming and are based on the
fact that if a constraint matrix satisfies a particular property, then a solution to a LP
formulation of CNF Satisfiability either is a 0-1 integer solution or can easily be trans-
formed to a 0-1 integer solution. Two well-known polynomially solvable extensions
to Horn formulas have been developed based on this idea.

The class called extended Horn formulas, due to Chandru and Hooker [6], can
best be visualized in its equivalent graph theoretic version [37] as follows.

Definition A.1 Let C be a clause and let R be a rooted directed tree with root s and
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with edges uniquely labeled with variables in L. Then C is estended Horn w.r.t. R
if the positive literals of C label a dipath P of R and the set of negative literals in
C label an edge-disjoint union! of dipaths @1, @2, ..., @; of R with exactly one of the
following conditions satisfied:

1. Q1,Q2,..., Q. start at the root s.
2. Q1,Qa, ..., Qs—1, (say), start at the root s, and @, and P start at a node g # s.

A CNF formula C is extended Horn w.r.t. R if each clause C € C is extended Horn
w.rt. R. A formula is extended Horn if it is extended Horn w.r.t. some such rooted
directed tree R.

A formula known to be extended Horn can be solved in polynomial time. Unfor-
tunately, the problem of recognizing an extended Horn formula is not known to be
polynomially solvable. The following restricted class can be recognized in polynomial

time [37].

Definition A.2 Clause C is simple extended Horn w.r.t. R if it is extended Horn
w.r.t. R and Condition 1 above is satisfied. A CNF formula C is simple extended
Horn w.r.t. R if each clause C € C is simple extended Horn w.r.t. R. A formula is
simple eztended Horn if it is simple extended Horn w.r.t. some such rooted directed
tree R.

The second class of formulas is what we call the class of balanced formulas defined

by [13, 39].

Definition A.3 Let C = {C},...,C»} be a CNF formula. Associate with C a m xn
(0, £1)-matrix M as follows: The rows of M are indexed on C and the columns are
indexed on the positive literals of L such that the entry M;; isa +1if z; € C;,a —1
if z; € C; and a 0 otherwise. Then C is a balanced formula if, in every submatrix of
M with exactly two nonzero entries per row and per column, the sum of the entries
is a multiple of four.

The recognition problem for balanced formulas is solved in polynomial time. However,
recognizing and solving a balanced formula is still a bit tricky.

The Operations Research perspective has successfully produced extensions of
classes of polynomially solved formulas, perhaps because it provides a clearer vi-
sualization of the nature of satisfiability. In this case, the visualization is a polytope
and the question is: Under what conditions does the polytope, if split in half, either

1We noted that edge-disjointness is unnecessary
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have solutions in both halves and such conditions remain satisfied in both halves,
or have no solutions in either half and it is easy to test that? Clearly, the question
of satisfiability would be easy on such a polytope. Our contribution involves step-
ping back from this OR approach to see how this basic idea applies to conventional
combinatorial algorithms for Satisfiability. The result is an algorithm that solves a
class broader than extended Horn, simple extended Horn, balanced formulas, or even
hidden extended Horn. Furthermore, this algorithm works without a recognition
step [36].

A.1.1 Single look-ahead unit resolution

Specifically, we apply a variant of the Davis-Putnam-Loveland algorithm to a CNF
formula. The variant does not allow backtracking but looks one level ahead in both
branches representing both possible assignments to a variable. If a partial assignment
cannot be extended in one branch because some clause becomes null after applying
unit resolution, the other branch is explored. If the partial assignment can be ex-
tended in either branch, one of the two is explored arbitrarily. If both branches
lead to null clauses after applying unit resolution, the algorithm terminates with a
“don’t know.” If a satisfying assignment is found, it is returned. If, before the first
split, a null clause is generated while applying unit resolution, then “unsatisfiable” is
returned. The algorithm SLUR [36] is given as follows:

Algorithm UCR (C)
Input: A CNF formula C
Output: A CNF formula C’' without unit clauses

While there is a unit clause {{} in C do the following:
If  is a positive literal set C := {C — {I} : C € C,l ¢ C}.
Otherwise set C := {C — {I}: C €C,l ¢ C}.
Output C.
End Algorithm UCR

Algorithm SLUR(C)
Input: A CNF formula C
Output: A satisfying truth assignment for C, “unsatisfiable,

" or “give up”

Initialize ¢ := 0.
Initialize C :=UCR(C).
If § € C then output “unsatisfiable” and halt.
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While C is not empty do the following:
Select a variable v appearing as a literal of C.
Set C; :=UCR({C — {v}:C €C,v ¢ C}).
Set Cy :=UCR({C - {3} : C €C,v ¢ C}).
If € C, and O € C; then output “give up” and halt.
Otherwise, if @ ¢ C; set C :=C;.
Otherwise, set t :=t U {v}, and set C := C,.
Output ¢ U {v : v was eliminated by UCR along the chosen path}.
End Algorithm SLUR

The algorithm works on extended Horn and hidden extended Horn formulas because
of the following. Let T denote any Davis-Putnam-Loveland search tree (rooted) for
an arbitrary formula C. Each node in T represents a set of clauses closed under
unit clause resolution. The leaves correspond to partial truth assignments for which
satisfiability or unsatisfiability has been determined. All edges of T are directed away
from the root.

Proposition A.1 If C is estended Horn, then there is a directed path from every
internal node of T to a leaf representing a solution.

Proposition A.2 If the root of T is an unsatisfiable leaf (i.e., the empty clause is
an element of the root), then C is unsatisfiable even if C is not an estended Horn
formula.

The above two propositions plus the fact that SLUR is a generalization of the algo-
rithm used to solve balanced formulas imply the following.

Proposition A.3 Algorithm SLUR solves C (never gives up on C) if C is (i) extended
Horn, (ii) hidden extended Horn, (iii) simple extended Horn, or (iv) balanced.

Although it is easily seen that SLUR can be implemented with quadratic complex-
ity, it is possible, by dove-tailing the two look-aheads and abandoning the computation
on one side once the other side has completed, to implement SLUR as a linear time
algorithm [39].

The class of problems solved by SLUR without giving up is larger than the hidden
extended Horn and balanced classes combined as the following examples show.
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Proposition A.4 Suppose that algorithm SLUR solves formula C without giving up,
and let C' be a set of clauses that are logical consequences of C. Then algorithm SLUR
also solves formula J = CUC' without giving up.

Proposition A.5 Suppose C is a formula containing clauses Cy, Ca,C3,Cy and z;, z;
are variables where {z;,z;} C C1, {2:,%;} C Cy, {Zi,z;} C Cs, and {Z;,%;} C Cy.
Then C is not hidden extended Horn. ‘

Example A.6 Let C be any non-empty formula solved without giving up by SLUR,
let C be any clause in C, and let

j = C U {C U {$n+1,l’n+2}, C U {.’En+1, ii'n_{.z}, C U {jn+l,$n+2}7 C U {i‘n+1,.’fn+2}}.

Algorithm SLUR solves J (by Proposition A.4) but J is not hidden extended Horn
(by Proposition A.5).

Example A.7 Let C be the CNF formula asserting that exactly an even number of
variables of L are true. E.g., for L = {z,, %1, 3, T2, 3, T3} we have

C = {{‘i17 T2, $3}7 {:Clv:z?a $3}7 {xh Z2, i'3}’ {:z.la 572, "23}}

Algorithm SLUR solves C. But C is not hidden extended Horn (by Proposition A.5).
Nor is C balanced (by inspection of the matrix). Moreover, C is not equivalent to any
proper subset of itself, so C cannot be constructed from a hidden extended Horn or
balanced formula, as in Proposition A.5 and Example A.6.

A.1.2 Single look-ahead with limited backtracking

There are several possible ways to improve SLUR. One way, mentioned above, is to
add power to the look-ahead step. As used above, SLUR relies only on the unit
clause rule to determine unsatisfiability for some assignment to some variable. Other
possibilities abound: for example, just adding a 2-SAT checker enables SLUR to solve
numerous formulas that it previously could not.

Algorithm SLUR can also be improved by adding a form of limited backtracking.
That is, instead of giving up immediately when both look-aheads produce an empty
clause, SLUR can be allowed to continue searching for a satisfying truth assignment
from a variable and value that did not previously produce an empty clause. We choose
a polynomial p and allow SLUR to backtrack at most p(|C|) times before giving up if
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satisflability or unsatisfiability has not been determined. Call the resulting algorithm,
with any fast look-ahead additions, ISLUR. There seems to be a chance that limited
backtracking in ISLUR can overcome a major weakness of SLUR: the inability to
solve complex unsatisfiable formulas.

Unfortunately, the performance of ISLUR is disappointing when presented with a
“typical” unsatisfiable k-CNF formula [21]. Let H(C) be a function that determines
what variable will be assigned values at what point during the execution of ISLUR
on k-CNF formula C. Let V C L be a subset of literals such that, for 1 <1 <n, z; is
in V if and only if z; is. Let C’ C C be a subset of subsets of L such that all subsets
in C' contain at least one literal taken from V. The value of common(V,C’) is the
total number of positive and negative literals in C’ taken from V. As an example, if

CI = {{‘Th T2, 5:3}’ {i.27 T4, iS}a {1‘35 :i'fn 376}, {i"ia i'Gv :1_77}}

and - - _
V= {$3, T3,ZT4,24,Ts, :US}

then common(V,C’) = 6.

Definition A.4 Fix0 < e <1 and 0 < v < 1. Call a k-CNF formula C with the
following property sparse: for all subsets V and C' C C such that |C'| < m® and at
least one literal of every subset C € C' is in V, common(V,C’) < k(1 —v)|C'|.

Proposition A.8 For all H functions, ISLUR gives up on unsatisfiable, sparse k-
CNF formulas, k > 3, with the number of occurrences of any particular variable
bounded from above by m'/4.

A.1.3 Pure implicational formulas

Falsifiability for pure implicational formulas (only the implies operator — is allowed)
is surprisingly rich in providing hierarchies of subclasses of progressively increasing
hardness, eventually reaching subclasses that are NP-complete [27]. This richness
may be extended to CNF formulas.

Let A = {a;,az,...,a,} be a set of n atoms.

Definition A.5 The set of pure implicational formulas is defined by the following
recursion:

1. Each atom a € A is a pure implicational formula.
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2. If Fy, F, are pure implicational formulas, then so is (F; — F3).

When parentheses are omitted, they are always assumed to associate to the right.

In what follows we assume that parentheses are omited from formulas when possi-
ble. Then every pure implicational formula can be written as Fy — Fp = ... = Fy —
z where all F;, 1 <1 < k, are pure implicational formulas and z is an atom. The role
of z is special when determining falsifiability for a pure implicational formula (does
there exist a truth assignment that falsifies F'7) as shown below.

Let F be a pure implicational formula such that the number of occurrences of every
atom, except z, in F' is no greater than two. Then, a recent result of Heusch [27]
says that the problem of determining falsifiability for F' is NP-complete. However,
Heusch also shows that, if the number of occurrences of z in F' is no greater than k,
and all other atoms occur at most twice, then the falsifiability of F' can be determined
in time bounded from above by |F|*. This result hints that there may be an infinite
hierarchy Sy C Ss..., where Sy, is the set of pure implicational formulas with at most &
occurrences of z and at most two occurrences of all other atoms, such that determining
the falsifiability of formulas in Sy is increasingly harder with increasing k.

In our work we generalized Heusch’s question somewhat. Let us call a formula
implicational if its only connectives are — and f, a constant proposition denoting
false. (The recursive definition is the same as the one for pure implicational formulas
except that f is also an implicattional formula.) It is well-known that every propo-
sitional formula is tautologically equivalent to an implicational formula. We studied
both satisfiability and falsifiability of implicational formulas where each propositional
variable occurs at most twice and f occurs at most k times.

Heusch observed that in the most difficult case for testing falsifiability for pure
implicational formulas, the proposition letter z must be false. Accordingly, the diffi-
cult cases of his problem reduce to ours via a substitution of f for z. We also noted
that testing falsifiability for implicational formulas and testing satisfiable formulas
approximately the same complexity (up to at most an approximately linear factor).

We have investigated an algorithm IMP for determining satisfiability for impli-
cational formulas that has the following characteristic.

Proposition A.9 Given an implicational formula F with each atom (proposition
variable) occurring in F at most twice, and with f occurring at most k times, algorithm
IMP determines satisfiability of F in O(k*|F|).
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The algorithm is much too complex to be given here. The reader is referred to [20]
for details.

The pure implicational logic results above are important for two reasons. First,
we have shown that Heusch’s hierarchy is fixed-parameter-tractable and as far as
we know this is the first such hierarchy result for Satisfiability problems. Levels of
a fixed-parameter tractable hierarchy are distinguished by a parameter k which in
some sense measures the density of an instance; any algorithm to solve instances of
length n for fixed k takes time bounded by some cx(1 + n®) where the value of e
holds steady with increasing k [15]. Second, study of Heusch’s hierarchy may reveal
the nature of easy and hard problems and we believe we have found, roughly, the
place in the hierarchy where the transition may occur, if at all. Regarding this point,
it is interesting to note that the expressibility of pure implicational formulas is quite
low and one wonders how such formulas can be rich enough to be hard. In any case,
the lack of expressibility may be exploited to assist complexity investigations in other
hierarchies.

It is easy to see that Heusch’s pure implicational formulas carry over to CNF
formulas quite naturally and all the results above apply to that CNF hierarchy. Such
a CNF hierarchy might be useful in answering the following question. Why should
the hierarchies of Gallo and Scutella [24], Dalal [14], or Kleine Biining [29] have O(n*)
complexity when a complexity of O(2%n?), say, is not inconsistent with any developed
theory?

A.1.4 How large are these special subclasses?

We would like some measure of the “size” of subclasses such as hidden extended
Horn, simple extended Horn, balanced, or SLUR. One way to do this is define a
parameterized probabilistic model for generating random formulas and determine over
what parameter subspace is a randomly generated formula a member of a particular
subclass with probability tending to 1. Comparing regions of the parameter space
where formulas likely belong to particular subclasses gives some idea of the size and
scope of such subclasses. Such comparisons are found in [22] and summarized below.

We use the following probabilistic model, denoted R, np, for generating random
CNF formulas.

Definition A.6 A random formula generated according to R np contains m clauses
constructed independently from L as follows. For each clause C € C', for all | € L,
admit [ in C with probability p, independently of other literals and clause construc-
tions.
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We chose model Ry, »p because it is one of the most popular models for analyzing
the average-case performance of SAT algorithms and because it supports many of the
classes we are interested in. A drawback of this model is that the probability that a
null clause exists in a random instance tends to 1 if pn < log(m) (that is, the average
number of literals in a clause is O(log(m))).

The model Rpnp, as well as most other models intending to be “unbiased,”
is symmetric and therefore does not favor non-symmetric subclasses such as Horn
formulas. Thus, Horn formulas are generated with probability tending to 1 over only
a small portion of the parameter space m,n,p. Surprisingly, this is true for simple
extended Horn formulas as well. Let Cp, ., be a CNF formula randomly generated
from Ronp. We have the following.

Proposition A.10 If pn < 1/m!/?* € > 0, then Cpnnp is a Horn formula with
probability tending to 1.

Proposition A.11 If pn > 1/m**¢ € > 0, then Cppnp is not a simple eztended
Horn formula with probability tending to 1.

The parameter space representing all combinations of values of m,n, p is visualized in
Figure 1. The vertical axis is pn, the average number of literals in a clause, and the
horizontal axis is m/n, the ratio of clauses to variables. The region where formulas
are Horn or simple extended Horn with high probability is below the horizontal line
labeled “Simple Extended Horn & Horn.” It may be puzzling that this region is
contained in the half plane pn < log(m) (shown in Figure 1 below the horizontal line
labeled “Null Clauses”) where the probability that a null clause exists in Cpnp tends
to 1. Actually, the number of null clauses in Cp, n for this half plane is approximately
m(1 —2pn) which means about 2pmn clauses are not empty. Thus, when pn = m~1?
the number of non-null clauses is about m!/? and these clauses are Horn and simple
extended Horn with high probability.

Our knowledge of stratified logic programs has influenced our understanding of
extended Horn formulas to reveal a surprising connection to “cycles” in Cr np-

Definition A.7 A cycle in a CNF formula C is an ordered collection of clauses
{Cy,Cy,...,Ck_1}, k > 2, such that, for all 1 = 0,..,k — 1, there is a variable common
to C; and Cit1 mod k (disregarding the variable’s stature as a positive or negative
literal).
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The relationship between cycles and extended Horn formulas that we exploit is the
following.

Proposition A.12 If a CNF formula C does not have a cycle, then C is an extended
Horn formula.

The following result shows where cycles are not common.

Proposition A.13 Ifpn < n'~¢/m and m/n > 1 or pn < y/n!~¢/m and m/n <1,
1> € >0, then there ezists no cycle in Cppnp with probability tending to 1.

Since acyclic formulas are extended Horn, we have a lower bound on the region
generating predominantly extended Horn sets. An upper bound may be found by
considering a property not possible in any extended Horn set. An instance C is not
extended Horn if there exists in C three clauses, C;, C3, C3, and three positive literals
I3, I, I3 such that C; has [; and [ but not I3, C; has l; and I3 but not I3, and Cj has
I, and I3 but not [;. In this case, C is said to have a triplet of non-extendible Horn
clauses, or a triplet for short. The following shows where formulas are not extended
Horn, in probability.

Proposition A.14 If pn > y/nlt¢/m, € > 0, then the average number of triplets in
Coanp grows without bound as m and n tend to co.

Thus, the region of Figure 1 below the diagonal lines labeled “Extended Horn” and
“Hidden Extended Horn” seem to be where random formulas usually are extended
Horn. Surprisingly, this region approximately coincides with the region for which
no cycles exist with high probability. The reason is that, although most cycles are
tolerated by extended Horn formulas, there are a few that are not. Because of the
symmetry of R, np, these few begin to be generated, in probability, when any cycle is.
That is, R n,p is unbiased and does not distinguish between “good” and “bad” cycles
and when some good cycles are generated, then so are some bad cycles generated.

We can find the limits of balanced formulas by computing the average number of
2 x 2 submatrices that contain all 1’s and do not sum to a multiple of 4. This average
is roughly ("22 (g) p* = O(m?n?p?). Formulas are balanced, in probability, only if this
quantity tends to 0. Therefore,
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Proposition A.15 If pn > (/n't¢/m, € > 0, then Cppnp is not a balanced formula
with probability tending to 1.

This means that balanced formulas are not frequently occurring where extended Horn
formulas are not frequently occurring (that is, above the diagonal lines labeled “Ex-
tended Horn” and “Hidden Extended Horn”).

The limits of the Hidden Horn class are obtained from the following.

Proposition A.16 The probability that Cp nyp is Hidden Horn tends to 0 iof pn — 0,
and pn > \/ni+e/m, € > 0, or if pn — 00, and pn > n'*</m, € > 0.

This region is above the diagonal lines labeled “Hidden Horn?” and “Hidden Ex-
tended Horn” in Figure 1.

Finally, due to results in [18, 19] we can say the following.

Proposition A.17 If p < 1, then with probability tending to 1, Cppnp can be solved
by SLUR without giving up.

The region in which SLUR performs well, in probability, is below the diagonal line of
Figure 1 labeled “SLUR.”
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A.2 Logic Programming Semantics

Logic programming began as the study of Horn clauses. However, the lack of natural
expressibility of Horn clauses led to the study of various generalizations, particularly
the generalization called normal logic programming rules, rules of the form

a(——ﬁl,...,ﬁk

where « is a positive literal and 31, . . ., By are literals. During the 1980’s a great deal of
work went into finding the “right” semantics for such rules: semantics that captured
the intuitions of negation as failure (e.g., as in PROLOG, such as the asymmetry
between head and body of a rule) but were fairly logically clean (unlike PROLOG’s
ad-hoc patch to add in negative subgoals). Although research continues on finding
the “right” semantics, two semantics have come into widespread favor, the Stable
semantics [25, 26] and the Well-Founded semantics [43].

The hope is that these semantics, if they can be efficiently implemented, will
restore the separation between logic and control that PROLOG promised but, in the
end, abandoned. In fact, by now this research has matured far enough that a second
generation of languages is beginning to be demanded.? A major difficulty in this
implementation is simply the computational complexity of the problems and of the
known algorithms. We limit attention here to propositional logic programs.

It is known that computing the stable semantics of a logic program is worst-case co-
N P-complete [31]. Thus research on implementing the stable semantics has focused
on finding methods that are reasonably efficient in a broad variety of circumstances.
The standard algorithm for computing the well-founded semantics, on the other hand,
is worst-case quadratic-time. Considering that the logic program whose well-founded
partial model we need to find may be derived by instantiating a logic program over
a large deductive database, quadratic time can be exceedingly expensive. A faster
algorithm for computing the well-founded semantics, besides being useful in its own
right, would be expected also to lead to faster algorithms for computing the stable
semantics.

A.2.1 Definitions of the well-founded and stable semantics

The definitions of the well-founded and stable semantics in [43, 25, 26] discuss how
these semantics are natural for logic programming. Here we give instead a character-
ization in terms of directed hypergraphs, one that we created (a small modification of

2The issues here are unrelated to the development of constraint logic programming languages.
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the definitions in [1, 17, 35, 42, 43]) in order to provide a graph-theoretic view upon
which to build an algorithm.

We considered a propositional logic program P as a directed hypergraph with
edges labeled with DNF formulas (containing only negative literals). First, we mod-
ified the program P by adding a new proposition letter s, and for each rule with no
positive literals in its body, we added s to the body. We also add a single rule s
(i.e., an assertion that s is true) to P. This does not change the well-founded or
stable semantics of P (except that it provides a new atom s always inferred to be
true).

Now we convert the problem of finding the stable and well-founded semantics to
hypergraph problems. The vertices of the hypergraph are the proposition letters of
this altered P. We treat the rule s « separately, identifying s as the source in the
hypergraph. For each other rule

. a b]_,bQ,...,bi,"Cl,"‘62,. cey TG
we create a directed hypergraph edge from {b, ..., bk} to a, labeled nc;A=cyA. . . A-c;.
Call this hypergraph H.

The well-founded semantics is defined in terms of a 4-valued logic, with truth
values t (true), L (unknown), f (false), and T (contradiction). The value T will not
actually arise here, but including it simplifies the mathematics. The truth tables for
“and,” “or,” and “not” are quite intuitive if the value T is ignored:

(Allt L f T] vt L f T] EN
t¢e L f T t It t t ¢t t N f
Llr L f f Lt L L ¢ L
f\f frf fif L fT ft
TIT F f T Tt ¢ T T TIT

With just Horn clauses, in the standard van-Emden Kowalski semantics [41], ¢
means accessible from source s in H, and f means inaccessible. For normal rules a
more complicated definition is used.

Definition A.8 Let 7 be a 4-valued truth assignment on the vertices of H.

o Let H be the set of hyperedges of H whose labels evaluate tot or T under 7. Let
H be the set of hyperedges of H whose labels evaluate to t or L under 7. (The
intuition is that # is an under-approximation to the set of rules we’ll finally
use, and H is an over-approximation.)
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o Define T = {v € H: v is accessible from s in H}
and F = {v € H : v is not accessible from s in H}. (The intuition is that
atoms in T are definitely provable, i.e., accessible from s, and the atoms in F'
are definitely unprovable, i.e., inaccessible.)

e Define
t fveT andvg F
() = f fvegT andveF
1L ifvgT andvgF
T ifveT andveF

o IfT =1’ then 7 is a 4-valued-stable model of P.

Every logic program has a 4-valued-stable model T where T never takes on value T
and, among 4-valued stable models, the set of elements with truth value L is mazimal;
this is the well-founded (partial) model of P.

If o 4-valued stable model is 2-valued, i.e., 7 takes on only the values t and f,
then 7 1s a stable model. O

The standard calculation of the well-founded semantics is essentially the following.
The proof that it finds the well-founded model is a corollary of the Tarski-Knaster
theorem on fixed points of monotonic operators.

Algorithm A.1 Let 7 be the constant L interpretation. For each integer n > 0,
Tay1 = T.. For P a finite propositional program, this sequence must reach a fized
point; that fized point is the well-founded partial model.

A.2.2 Computing the well-founded semantics faster

We investigated speeding up the computation of the well-founded semantics. Speedups
had previously been found for programs obeying various strong restrictions on possible
kinds of cycles. We found one other:

Proposition A.18 Fiz a natural number k. Let Py be the set of all normal logic
programs P for which there ezists a set A of k atoms such that, if all rules with heads
in A are deleted from P, the positive dependency relation of the remaining rules is
acyclic. There is an algorithm for constructing the well-founded semantics for all
programs in Py in time linear in the size of the program.
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But no more general speedups (speedups of worst-case behavior) were known. In
fact, graph theoretic evidence [34] suggested that the standard algorithm might be
optimal. To wit, during the course of running the algorithm above, the graph X
grows monotonically and the graph H shrinks monotonically until the fixed point is
reached. An obvious speedup is to maintain information about accessibility in both
directed hypergraphs dynamically. Now it is easy to maintain accessibility informa-
tion efficiently in a growing directed hypergraph, but the obvious generalization does
not work for a shrinking hypergraph. Reif’s work suggests that, even for a shrink-
ing digraph, maintaining accessibility seems generally to take quadratic time. This
makes the goal of speeding up the computation of the well-founded semantics sound
implausible.

Thus if there is to be any faster algorithm of the well-founded semantics it must
make use of special features of how the graph H shrinks. Our speedup made use of one
additional feature of the standard well-founded semantics algorithm: the deletions do
not continue indefinitely; rather, as soon as a fixed point is reached, the algorithm

halts.

Our speedup works for a very broad class of logic programs, with less stringent
(and very different) syntactic constraints than previously studied classes. First; it
requires that the size |P| of the program must be at least on the order of the square
of the number 4| of proposition letters. Second, it requires that either (1) each rule of
the program P have at most two positive subgoals — any number of negative subgoals
is allowed — or that (2) each possible directed edge on the proposition letters be a
directed subedge of fewer than u = /|H|/|A| hyperedges of the original #. Similar
but weaker speedups hold if the bound y is increased. Note that the bound is trivially
satisfied if #H is a digraph, i.e., each rule of P has at most one positive subgoal.

The basic technique of the algorithm involves, before searching # for inaccessible
nodes, doing approximate searches. First it searches for vertices with in-degree 0
(in-degrees can be maintained efficiently); if any are found, it adds these to set F' and
returns to the basic algorithm loop. Next, it searches an approximation H' of H, where
H' is constructed so that inaccessibility in H' guarantees inaccessibility in 7. This
approximation can be maintained efficiently as the algorithm runs. Approximation
H' is smaller than 7, so searching progresses faster. If inaccessible nodes are found,
it adds these to set F' and returns to the basic algorithm loop.

Only if no inaccessible vertices are found does the algorithm go on to searching
all of H. If it does happen to search all of #, then either it finds that a fixed point is
reached (and thus that the algorithm has terminated, giving a one-time linear cost)
or else, as can be shown by combinatorial arguments, many inaccessible vertices are
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found, reducing the per-vertex cost of the search.

The approximation H' is defined as follows for the case of the 2 positive subgoal
per rule limitation: First, for every possible directed digraph edge e on the set of
vertices, if e is a directed subedge of > u = /|H|/|A| hyperedges of H, replace all
those hyperedges with the single directed edge e. Second, for each vertex a which

is the head of > 1/u|H||A| hyperedges of the first approximation, replace all those

- subedges with the single directed edge from s to a. Clearly, accessibility in H implies

accessibility in H'.

Proposition A.19 For any propositional normal logic program P obeying the syn-
tactic restrictions above, our algorithm computes the well-founded partial model for
P in time

O(|P| + |A]® + [A PIF).

A.2.3 Easily Computed Special Cases in Logic Programming

In her Ph.D. dissertation under the supervision of John Schlipf, Jennifer Seitzer stud-
ied a number of special cases of logic programs under which computing well-founded
and/or stable semantics can be done (relatively) quickly. A joint paper by Seitzer
and Schlipf will be presented at the Fourth International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning in Schlof Dagstuhl, Germany, in July 1997.
The thrust of the paper was to investigate how severely limiting the number of times
a variable can appear in the head or the body of a rule (and thus severely limiting
the occurrence of cycles in the dependency relation of the program) simplifies the
computation of the well-founded semantics and and the search for stable models. We
include one pair of results below:

Recall that computation of the well-founded partial model of a normal logic pro-
gram can be done in quadratic time, but it is not known whether a faster algorithm
works in general; determining whether a normal logic program has a stable model is
NP-complete.

A normal propositional logic program P is uni-rule if no two rules have the same
head. The authors show that:

1. There is a linear-time algorithm which, given a uni-rule normal propositional
program P, computes its well-founded partial model.
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2. Determining whether a uni-rule normal propositional program P has a stable
model is NP-complete.

The second result can be taken to show that uni-rule programs, although a simple
class of logic programs, definitely have non-trivial expressive power; this in turn shows
that the speed-up given in the first result is significant.



27

A.3 Professional Activities and Invitations

A.3.1 Conferences & workshops

1.

10.

11.

3rd International Symposium on Mathematics and Artificial Intelligence. F't.
Lauderdale, Florida. January, 1994. Session chair and invited talk “Toward a
good algorithm for determining unsatisfiability efficiently, in probability.”

15th International Symposium on Mathematical Programming. Ann Arbor,
Michigan. August, 1994. Session chair and invited talk “Average case results
for satisfiability under the random-clause-width model.”

Logic and Complexity Theory. Hosted by Daniel Leivant with partial funding
from the ONR. Indianapolis, Indiana. October, 1994. Invited participants.

Carnegie Mellon University Seminar. December, 1994. Invited talk “Proba-
bilistic Analysis of Satisfiability Algorithms.”

Timberline conference on the interface between OR and Al Portland Oregon.
May, 1995. “On finding solutions to extended Horn sets.”

. 3rd International Conference on Logic Programming and Nonmonotonic Rea-

soning. Lexington, Kentucky. June, 1995. “Computing the well-founded se-
mantics faster.”

. Boolean mini-symposium. Jerusalem, Israel. July, 1995. Invited talk “On

finding solutions to extended Horn and balanced formulas.”

14th European Symposium on Operations Research. Hebrew University, Jerusalem,
Israel. July, 1995. Invited talk “Computing the well-founded semantics faster.”

7th ACM Symposium on Parallel Architectures and Algorithms. University
of California, Santa Barbara. July, 1995. “On testing the consecutive-ones
property in parallel.”

INFORMS annual meeting. New Orleans, Louisiana. October, 1995. Invited
talk “Computing the well-founded semantics faster.”

4th International Symposium on Mathematics and Artificial Intelligence. Ft.
Lauderdale, Florida. January, 1996. Invited talk “An improved algorithm for
determining the falsifiability of pure implicational logic.”
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12. DIMACS Workshop on Satisfiability. Rutgers University, New Brunswick, New
Jersey. April, 1996. Invited talk “Special polynomial time subclasses of Satis-

fiability.”

13. Siena Workshop on Satisfiability. University of Siena, Siena, Italy. May, 1996.
“An algorithm for the class of pure implicational formulas.”

14. Dagstuhl Seminar # 9627 on Disjunctive Logic Programming and Databases:
Nonmonotonic Aspects. Schlofl Dagstuhl, Saarland, Germany. July, 1996. In-
vited talk (TBA).

A.3.2 Workshop organized

Workshop on Satisfiability. Organized by H.K. Biining, J. Franco, G. Gallo, E.
Speckenmeyer at Siena, Italy. May, 1996.

A.3.3 Journal articles (including refereed proceedings)

‘ 1. J. Franco and R. Swaminathan. To appear. Average case results for satisfiabil-
ity algorithms under the random-clause-width model. Annals of Mathematics
and Artificial Intelligence (invited).

2. J. Schlipf, F. Annexstein, J. Franco, R. Swaminathan. 1995. On finding solu-
tions to extended Horn sets. Information Processing Letters 54, pp. 133-137.

3. J. Franco and R. Swaminathan. To appear. Toward a good algorithm for
determining the unsatisfiability of propositional formulas. Journal of Global
Optimization (invited).

4. K. Berman, J. Schlipf, and J. Franco. 1995. Computing the well-founded
semantics faster. Proc. 8rd International Conference on Logic Programming
and Non-Monotonic Reasoning. Lecture Notes in Artificial Intelligence #928,
A. Nerode, V. Marek, and M. Truszczyiski, Editors. pp. 113-126.

5. F. Annexstein and R. Swaminathan. 1995. Proc. 7th ACM Symposium on
Parallel Architectures and Algorithms (submitted to Journal of Computer and
System Sciences).

6. R. Swaminathan, D. Giriraj, and D. Bhatia. 1995. The pagenumber of the class
of bandwidth-k graphs is k — 1. Information Processing Letters 55, pp. 71-74.
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J. Gu, P. Purdom, J. Franco, and B. Wah. Algorithms for the Satisfiability
(SAT) problem: a survey. To appear in a DIMACS volume consisting of the
proceedings of the “Workshop on Satisfiability,” March, 1996.

J. Franco. Relative Size of Certain Polynomial Time Solvable Subclasses of
Satisfiability. To appear in a DIMACS volume consisting of the proceedings of
the “Workshop on Satisfiability,” March, 1996.

J. Franco, J. Goldsmith, J. Schlipf, E. Speckenmeyer, and R. Swaminathan. An
algorithm for determining falsifiability for a special class of pure implicational
formulas. Submitted to Discrete Applied Mathematics special issue devoted
to the Siena Workshop on Satisfiability. J. Franco, G. Gallo, H.K. Bining,
E. Speckenmeyer, and C. Spera, editors.

J. W. Rosenthal, J. M. Plotkin, and J. Franco. The Probability of Pure Literals.
Submitted.

J. Seitzer and J. Schlipf. Affordable classes of normal logic programs. To appear
in the Proceedings of the Fourth International Conference on Logic Programming
and Nonmonotonic Reasoning, 1997.

A.3.4 Popular literature

1.
2.

J. Franco. Network servers and Java. Invited submission to IEEE Potentials.

J. Franco. Coping with problems computers can’t solve. Invited submission to
IEEE Potentials.

A.3.5 Other relevant journal article

K. Berman, J. Franco, and J. Schlipf. 1995. Unique satisfiability for Horn
sets can be solved in nearly linear time. Discrete Applied Mathematics 60,
pp. 77-91.

A.3.6 Articles in progress

1.

J. Franco, J. Schlipf, and R. Swaminathan. Improved single look-ahead unit
resolution.
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2. J. Franco, and A. Van Gelder. On the size of certain polynomial time subclasses
of Satisfiability.

3. V. Marek, J. Schlipf, and M. Truszczynski. The well-founded semantics for

database revision programs.

A.3.7 Relevant visits

1. John Hooker, GSIA, Carnegie Mellon University. John Franco visited CMU in
December, 1994.

2. Ewald Speckenmeyer, Computer Science, University of Cologne, Germany. Au-
gust 15 - September 9, 1995. Prof. Speckenmeyer visited the Computer Science
Theory Group at the University of Cincinnati.

3. Peter Hammer, RUTCOR, Rutgers University. John Franco visited RUTCOR
for eight days in August, 1996.

A.3.8 External Ph.D. thesis committee

John Franco. RUTCOR, Rutgers University. May, 1995. Ondre;j Cepek, “Struc-

tural Properties and Minimization of Horn Boolean Functions.”

A.3.9 Editing

The proceedings of the Siena Workshop on Satisfiability will be published as
a special issue of Discrete Applied Mathematics. Editors will be the workshop
organizers.

A.3.10 Future projects

The following invited projects are expected to be initiated over the next two years.

1. Book on Satisfiability Algorithms, Cambridge University Press. Co-authors are
Jun Gu, Paul Purdom, John Franco, Ben Wah. This will be a much expanded
version of the survey paper by the same authors.

2. IEEE Tutorial on Satisfiability. Same co-authors as above.
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3. Article for special issue of Communication of the ACM devoted to Satisfiability.
Co-authors yet to be determined.

4. Monograph on Satisfiability for a special SIAM series edited by Peter Hammer.
Exact topic to be determined.
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A.4 Collaboration Under ONR Sponsorship

Several colleagues and students have contributed to results reported here and con-
tinue to assist the principle investigators on new and unreported results. We ac-
knowledge such contributions here. Kenneth Berman was a joint researcher on
computing the well-founded semantics faster. We are currently writing a joint paper
with Victor Marek and Mirostav Truszczyniski of the University of Kentucky on
well-founded “revision semantics,” a semantics for maintaining database dependen-
cies during database updates. The work on implicational formulas was inspired by
and joint with Ewald Speckenmeyer of the University of Kéln, Germany. Judy
Goldsmith of the University of Kentucky also contributed significantly to this work,
particularly making us aware of the literature on fixed-parameter-tractable hierar-
chies. Nearly all Satisfiability results were obtained in collaboration with R. Swami-
nathan. Moreover, R. Swaminathan, while funded, made invaluable contributions to
two major works with Fred Annexstein on parallelizing an algorithm for determining
the consecutive ones property of matrices and with D. Giriraj and D. Bhatia on show-
ing that the pagenumber of the class of bandwidth-k graphs is £ — 1. The results on
single look-ahead unit resolution were obtained with Fred Annexstein. The obser-
vation that single look-ahead unit resolution can be achieved in linear time is due to
Klaus Triimper of the University of Texas, Dallas. Discussions with Endre Boros
of Rutgers University and John Hooker of Carnegie Mellon University about single
look-ahead unit resolution were helpful in seeing our results from a different perspec-
tive. Probabilistic results pertaining to the size of certain polynomial time solvable
subclasses of SAT, under the fixed-width model, are joint with Allen Van Gelder
of the University of California, Santa Cruz. In particular, Allen suggested an anal-
ysis of the matching algorithm. Students Jennifer Seitzer and Chris Giannella
have experimented with unusual methods for determining stable semantics. Student
Chris Giannella has also run experiments to help determine conditions under which
algorithms exhibit a “threshold” property. Student Eric Luczaj is exploring polyno-
mial subclasses of Satisfiability. Student Bryan Bayley has experimented with an
algorithm for verifying unsatisfiability. The following are among those who partici-
pated in our Workshop on Satisfiability in Siena in May, 1996: Endre Boros, Peter
Hammer, David Mitchell, John Schlipf, Allen Van Gelder, and Jinchang
Wang.
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